Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Immunobiology ; 228(3): 152378, 2023 05.
Article in English | MEDLINE | ID: covidwho-2297402

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world causing a pandemic known as coronavirus disease 2019 (COVID-19). Cytokine storm was directly correlated with severity of COVID-19 syndromes. We evaluated the levels of 13 cytokines in ICU hospitalized COVID-19 patients (n = 29) before, and after treatment with Remdesivir as well as in healthy controls (n = 29). Blood samples were obtained from ICU patients during ICU admission (before treatment) and 5 days after treatment with Remdesivir. A group of 29 age- and gender-matched healthy controls was also studied. Cytokine levels were evaluated by multiplex immunoassay method using a fluorescence labeled cytokine panel. In comparison to cytokine levels measured at ICU admission, serum levels were reduced of IL-6 (134.75 pg/mL vs. 20.73 pg/mL, P < 0.0001), TNF-α (121.67 pg/mL vs. 10.15 pg/mL, P < 0.0001) and IFN-γ (29.69 pg/mL vs. 22.27 pg/mL, P = 0.005), whereas serum level was increased of IL-4 (8.47 pg/mL vs. 12.44 pg/mL, P = 0.002) within 5 days after Remdesivir treatment. Comparing with before treatment, Remdesivir significantly reduced the levels of inflammatory (258.98 pg/mL vs. 37.43 pg/mL, P < 0.0001), Th1-type (31.24 pg/mL vs. 24.46 pg/mL, P = 0.007), and Th17-type (36.79 pg/mL vs. 26.22 pg/mL, P < 0.0001) cytokines in critical COVID-19 patients. However, after Remdesivir treatment, the concentrations of Th2-type cytokines were significantly higher than before treatment (52.69 pg/mL vs. 37.09 pg/mL, P < 0.0001). In conclusion, Remdesivir led to decrease levels of Th1-type and Th17-type cytokines and increase Th2-type cytokines in critical COVID-19 patients 5 days after treatment.


Subject(s)
COVID-19 , Cytokines , Humans , Th1 Cells , Th2 Cells , SARS-CoV-2 , COVID-19 Drug Treatment
2.
Immunobiology ; 2023.
Article in English | EuropePMC | ID: covidwho-2265249

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world causing a pandemic known as coronavirus disease 2019 (COVID-19). Cytokine storm was directly correlated with severity of COVID-19 syndromes. We evaluated the levels of 13 cytokines in ICU hospitalized COVID-19 patients (n=29) before, and after treatment with Remdesivir as well as in healthy controls (n=29). Blood samples were obtained from ICU patients during ICU admission (before treatment) and 5 days after treatment with Remdesivir. A group of 29 age- and gender-matched healthy controls was also studied. Cytokine levels were evaluated by multiplex immunoassay method using a fluorescence labeled cytokine panel. In comparison to cytokine levels measured at ICU admission, serum levels were reduced of IL-6 (134.75 pg/mL vs. 20.73 pg/mL, P< 0.0001), TNF-α (121.67 pg/mL vs. 10.15 pg/mL, P< 0.0001) and IFN-γ (29.69 pg/mL vs. 22.27 pg/mL, P= 0.005), whereas serum level was increased of IL-4 (8.47 pg/mL vs. 12.44 pg/mL, P= 0.002) within 5 days after Remdesivir treatment. Comparing with before treatment, Remdesivir significantly reduced the levels of inflammatory (258.98 pg/mL vs. 37.43 pg/mL, P< 0.0001), Th1-type (31.24 pg/mL vs. 24.46 pg/mL, P= 0.007), and Th17-type (36.79 pg/mL vs. 26.22 pg/mL, P< 0.0001) cytokines in critical COVID-19 patients. However, after Remdesivir treatment, the concentrations of Th2-type cytokines were significantly higher than before treatment (52.69 pg/mL vs. 37.09 pg/mL, P< 0.0001). In conclusion, Remdesivir led to decrease levels of Th1-type and Th17-type cytokines and increase Th2-type cytokines in critical COVID-19 patients 5 days after treatment.

3.
Ocul Immunol Inflamm ; : 1-7, 2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-2241968

ABSTRACT

PURPOSE: To determine the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in postmortem ocular specimens of patients with severe COVID-19 disease. PATIENTS AND METHODS: Postmortem conjunctival (28 samples), aqueous humor (30 samples) and vitreous humor (30 samples) specimens were obtained bilaterally from the eyes of 15 deceased COVID-19 patients within one hour of death. The presence of viral RNA was evaluated in samples using Real-time reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: Positive RT-PCR SARS-COV-2 results were found in one conjunctival and 2 vitreous humor samples. All aqueous humor samples tested negative for the presence of SARS-COV-2 RNA. Of note, three positive samples were obtained from three different patients. The overall prevalence of positive RT-PCR ocular samples was 3.4% among all samples and 20% at the patient level. CONCLUSION: SARS-CoV-2 RNA is detectable in postmortem conjunctival and vitreous humor samples of patients with severe COVID-19.

4.
Recent Pat Biotechnol ; 15(2): 112-136, 2021 Oct 04.
Article in English | MEDLINE | ID: covidwho-1194530

ABSTRACT

BACKGROUND: Viral respiratory infections could result in perturbation of the gut microbiota due to a probable cross-talk between lungs and gut microbiota. This can affect pulmonary health and the gastrointestinal system. OBJECTIVE: This review aimed to discuss the impact of probiotics/prebiotics and supplements on the prevention and treatment of respiratory infections, especially emerging pathogens. METHODS: The data were searched in PubMed, Scopus, Google Scholar, Google Patents, and The Lens-Patent using keywords of probiotics and viral respiratory infections in the title, abstract, and keywords. RESULTS: Probiotics consumption could decrease the susceptibility to viral respiratory infections, such as COVID-19 and simultaneously enhance vaccine efficiency in infectious disease prevention through the immune system enhancement. Probiotics improve the gut microbiota and the immune system via regulating the innate system response and production of anti-inflammatory cytokines. Moreover, treatment with probiotics contributes to intestinal homeostasis restitution under antibiotic pressure and decreasing the risk of secondary infections due to viral respiratory infections. Probiotics present varied performances in different conditions; thus, promoting their efficacy through combining with supplements (prebiotics, postbiotics, nutraceuticals, berberine, curcumin, lactoferrin, minerals, and vitamins) is important. Several supplements reported to enhance the probiotics' efficacy and their mechanisms as well as probiotics- related patents are summarized in this review. Using nanotechnology and microencapsulation techniques can also improve probiotics' efficiency. CONCLUSION: Given the global challenge of COVID-19, probiotic/prebiotic and following nutritional guidelines should be regarded seriously. Additionally, their role as an adjuvant in vaccination for immune response augmentation needs attention.


Subject(s)
Prebiotics , Probiotics , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control , Adjuvants, Immunologic , COVID-19/immunology , COVID-19/microbiology , COVID-19/prevention & control , Dietary Supplements , Gastrointestinal Microbiome , Humans , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL